Deep Belief Nets in C and CUDA C Volume 1Deep Belief Nets in C and CUDA C Volume 1



At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing ...

Author: Timothy Masters

Publisher: Apress

ISBN: 1484235908

Category:

Page: 219

View: 587

Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. What You Will Learn Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Deep Belief Nets in C and CUDA C Volume 1Deep Belief Nets in C and CUDA C Volume 1



The book provides C++ code for many essential deep belief net algorithms. This includes versions for multiple-thread execution on Windows-based computers, as well as CUDA C implementations for using the supercomputer capabilities of ...

Author: Timothy Masters

Publisher: Apress

ISBN: 9781484235911

Category:

Page: 225

View: 241

Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. What You Will Learn Employ deep learning using C++ and CUDA C Work with supervised feedforward networks Implement restricted Boltzmann machines Use generative samplings Discover why these are important Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Deep Belief Nets in C and CUDA C Volume 3Deep Belief Nets in C and CUDA C Volume 3



It would be hopeless to try in this book to educate inexperienced readers in even the most basic aspects of CUDA programming. Volume 1 of my Deep BeliefNetworks in C++ and CUDA C series does contain an overview for the curious and ...

Author: Timothy Masters

Publisher: Apress

ISBN: 9781484237212

Category:

Page: 184

View: 797

Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. These models are especially useful for image processing applications. At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download. What You Will Learn Discover convolutional nets and how to use them Build deep feedforward nets using locally connected layers, pooling layers, and softmax outputs Master the various programming algorithms required Carry out multi-threaded gradient computations and memory allocations for this threading Work with CUDA code implementations of all core computations, including layer activations and gradient calculations Make use of the CONVNET program and manual to explore convolutional nets and case studies Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Deep Belief Nets in C and CUDA C Volume 2Deep Belief Nets in C and CUDA C Volume 2



He has authored the following books on practical applications of predictive modeling: Deep BeliefNets in C++ and CUDA C: Volume 1 (Apress, 2018); Assessing and Improving Prediction and Classification (Apress, 2018); Data Mining ...

Author: Timothy Masters

Publisher: Apress

ISBN: 9781484236468

Category:

Page: 265

View: 551

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You’ll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you’ll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. What You'll Learn Code for deep learning, neural networks, and AI using C++ and CUDA C Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more Use the Fourier Transform for image preprocessing Implement autoencoding via activation in the complex domain Work with algorithms for CUDA gradient computation Use the DEEP operating manual Who This Book Is For Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Deep Belief Nets in C and Cuda CDeep Belief Nets in C and Cuda C



This book presents the essential building blocks of the most common forms of deep belief nets.

Author: Timothy Masters

Publisher: CreateSpace

ISBN: 1507751478

Category:

Page: 244

View: 962

Deep belief nets are one of the most exciting recent developments in artificial intelligence. The structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a 'thought process' that is capable of learning abstract concepts built from simpler primitives. A typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. This book presents the essential building blocks of the most common forms of deep belief nets. At each step the text provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the DEEP program which implements these algorithms, are available for free download from the author's website.

Modern Data Mining Algorithms in C and CUDA CModern Data Mining Algorithms in C and CUDA C



Readers not familiar with reduction can find it explained in most CUDA programming books. I also have a gentle tutorial on it in Volume 1 of my “Deep Belief Nets in C++ and CUDA C” series. Two separate kernels are launched to perform ...

Author: Timothy Masters

Publisher: Apress

ISBN: 9781484259887

Category:

Page: 233

View: 673

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are: Forward selection component analysis Local feature selection Linking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it. What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is For Intermediate to advanced data science programmers and analysts.

Handbook of Research on Big Data Storage and Visualization TechniquesHandbook of Research on Big Data Storage and Visualization Techniques



Retrieved October 17, 2016 from https://www.slideshare. net/maxdemarzi/graph-database-use-cases Massachusetts Institute of Technology. ... Deep BeliefNets in C++ and CUDA C: Vol. 1. Restricted Boltzmann Machines. Retrieved on May 31, ...

Author: Segall, Richard S.

Publisher: IGI Global

ISBN: 9781522531432

Category:

Page: 917

View: 401

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.

Emerging ICT for Bridging the Future Proceedings of the 49th Annual Convention of the Computer Society of India CSI Volume 1Emerging ICT for Bridging the Future Proceedings of the 49th Annual Convention of the Computer Society of India CSI Volume 1



LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010) CUDA C Programming Guide, PG-02829-001_v5.5, ... 400–406 (2000) Marc'Aurelio Ranzato, Y., Boureau, L., LeCun, Y.: Sparse feature learning for deep belief networks. In: Proc.

Author: Suresh Chandra Satapathy

Publisher: Springer

ISBN: 9783319137285

Category:

Page: 667

View: 637

This volume contains 73 papers presented at CSI 2014: Emerging ICT for Bridging the Future: Proceedings of the 49th Annual Convention of Computer Society of India. The convention was held during 12-14, December, 2014 at Hyderabad, Telangana, India. This volume contains papers mainly focused on Fuzzy Systems, Image Processing, Software Engineering, Cyber Security and Digital Forensic, E-Commerce, Big Data, Cloud Computing and ICT applications.

Testing and Tuning Market Trading SystemsTesting and Tuning Market Trading Systems



You’ve had an idea and have done some preliminary experiments, and it looks promising. Where do you go from here? Well, this book discusses and dissects this case study approach.

Author: Timothy Masters

Publisher: Apress

ISBN: 9781484241738

Category:

Page: 325

View: 231

Build, test, and tune financial, insurance or other market trading systems using C++ algorithms and statistics. You’ve had an idea and have done some preliminary experiments, and it looks promising. Where do you go from here? Well, this book discusses and dissects this case study approach. Seemingly good backtest performance isn't enough to justify trading real money. You need to perform rigorous statistical tests of the system's validity. Then, if basic tests confirm the quality of your idea, you need to tune your system, not just for best performance, but also for robust behavior in the face of inevitable market changes. Next, you need to quantify its expected future behavior, assessing how bad its real-life performance might actually be, and whether you can live with that. Finally, you need to find its theoretical performance limits so you know if its actual trades conform to this theoretical expectation, enabling you to dump the system if it does not live up to expectations. This book does not contain any sure-fire, guaranteed-riches trading systems. Those are a dime a dozen... But if you have a trading system, this book will provide you with a set of tools that will help you evaluate the potential value of your system, tweak it to improve its profitability, and monitor its on-going performance to detect deterioration before it fails catastrophically. Any serious market trader would do well to employ the methods described in this book. What You Will Learn See how the 'spaghetti-on-the-wall' approach to trading system development can be done legitimatelyDetect overfitting early in developmentEstimate the probability that your system's backtest results could have been due to just good luckRegularize a predictive model so it automatically selects an optimal subset of indicator candidatesRapidly find the global optimum for any type of parameterized trading systemAssess the ruggedness of your trading system against market changesEnhance the stationarity and information content of your proprietary indicatorsNest one layer of walkforward analysis inside another layer to account for selection bias in complex trading systemsCompute a lower bound on your system's mean future performanceBound expected periodic returns to detect on-going system deterioration before it becomes severeEstimate the probability of catastrophic drawdown Who This Book Is For Experienced C++ programmers, developers, and software engineers. Prior experience with rigorous statistical procedures to evaluate and maximize the quality of systems is recommended as well.